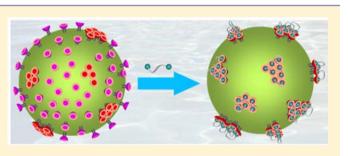


# Modulation of In-Membrane Receptor Clustering upon Binding of Multivalent Ligands


Anna Grochmal,<sup>†</sup> Elena Ferrero,<sup>†</sup> Lilia Milanesi,<sup>‡</sup> and Salvador Tomas<sup>\*,†</sup>

<sup>†</sup>Institute of Structural and Molecular Biology and Department of Biological Sciences, School of Science, Birkbeck University of London, Malet Street, London WC1E 7HX, U.K.

<sup>‡</sup>School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, U.K.

**Supporting Information** 

**ABSTRACT:** In living cells and biomimetic systems alike, multivalent ligands in solution can induce clustering of membrane receptors. The link between the receptor clustering and the ligand binding remains, however, poorly defined. Using minimalist divalent ligands, we develop a model that allows quantifying the modulation of receptor clustering by binding of ligands with any number of binding sites. The ligands, with weak binding affinity for the receptor and with binding sites held together by flexible linkers, lead to nearly quantitative clustering upon binding in a wide range of



experimental conditions, showing that efficient modulation of receptor clustering does not require pre-organization or large binding affinities per binding site. Simulations show that, in the presence of ligands with five or more binding sites, an on/off clustering response follows a very small change in receptor density in the membrane, which is consistent with the highly cooperative behavior of multivalent biomolecular systems.

# 1. INTRODUCTION

The cell membrane is a very complex construct that defines the cell and regulates the contact of the cell with the environment.<sup>1</sup> Minute changes in the cell environment are picked up by the cell membrane, generating the appropriate response within the cell. In most cases, the response requires changes in the organization of membrane components. For example, signal transduction, which is at the heart of both the immunological response and neurotransmission, involves the formation of clusters of specialized membrane-associated proteins, which can be initiated by the presence in the medium of the appropriate chemical species.<sup>2–8</sup> Clearly, understanding the mechanism of the clustering of membrane-associated molecules, and what role their binding to extra-membrane molecules plays in the clustering process, is essential in order to understand how the cell membrane works at the molecular level.

Minimalist chemical systems have been developed that exploit the ability of membrane-embedded receptors to form clusters, and have found applications in sensing and catalysis.<sup>9–16</sup> Minimalist systems are also useful to analyze the binding of in-solution molecules to surface-confined receptors in the absence of biomolecular complexity. For example, efforts have led to the development of simple and elegant analytical models that allow quantifying the binding of multivalent ligands to a surface covered with closely packed receptors,<sup>17</sup> and the relationship between intra-membrane (leading to receptor clustering) and inter-membrane (leading to liposome aggregation) binding of multivalent ligands in a lipid membrane.<sup>18</sup> The close relationship between receptor clustering and ligand binding has also been highlighted. Thus, the formation and destruction of clusters of receptors upon binding of the ligand has been described.<sup>19–23</sup> Conversely, it has been reported that the receptor clusters may show a different affinity for a multivalent ligand and lead even to membrane adhesion.<sup>24–27</sup> In these works however the focus is in the description of the phenomenon, and no attempt is made to quantify the mutual modulation between the binding of the ligand and clustering of the receptor.

Recently, we developed a model that allowed us to quantify the clustering-disperse equilibrium of a membrane-embedded receptor and evaluate what effect the binding of a ligand has on this equilibrium.<sup>28</sup> The model allowed us to demonstrate that the binding to a ligand in solution and the clustering of a membrane-embedded receptor are closely related processes that modulate each other, even in the absence of a clear multivalence effect or a conformational change in the receptor. Clearly, monovalent ligands modulate the clustering of the receptor because the binding of the ligand modifies the stability of the clustered form. A multivalent ligand should be able to enhance the receptor cluster stability by binding preferably to the pre-existing cluster and by recruiting disperse receptors. Crucially, it has been observed that affinity increases at higher receptor densities in the membrane.<sup>29–33</sup> In this work we use a minimalist chemical system composed of liposomes, an uncomplicated synthetic receptor, and a family of minimal

 Received:
 May 9, 2013

 Published:
 June 13, 2013

#### Journal of the American Chemical Society

multivalent (i.e., divalent) ligands with the aim of analyzing in detail the interplay between receptor clustering and multivalent ligand binding.

### 2. RESULTS AND DISCUSSION

**2.1. Design and Synthesis of the Model System.** Membrane-anchored receptor 1 has been previously used in the study of the modulation of clustering by the binding of monovalent ligands. The Zn-porphyrin headgroup fulfills the role of binding site, specific for basic N-bearing ligands, and also as reporting moiety on account of its characteristic changes in the UV–vis absorption and fluorescence spectra upon clustering and ligand binding.<sup>28</sup> 1 has been shown to form clusters while embedded in the membrane, the stability of which is described by the clustering constant:

$$K_{\rm DC} = \frac{[C]R_{\rm L}}{[D]} \tag{1}$$

where C is any cluster of 1 containing two or more molecules, D is the dispersed form of 1, and  $R_L$  is the ratio [Lipid]/[1]. Changes in the absorbance of 1 with  $R_L$  are used to determine  $K_{DC}$ , which is 13.6. This result means that at  $R_L = 13.6$  (i.e., 6.8% receptor loading), 50% of embedded 1 is found in the cluster C form and 50% in the dispersed D form (see Supplementary Figure 2).

Imidazole derivatives L1, L2, L3, and L4 (Figure 1) are used as model ligands, as they display a moderate binding affinity to

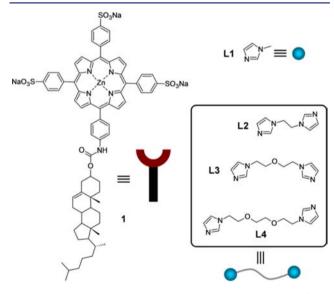



Figure 1. Chemical structure and cartoon representation of the receptor 1 and the ligands L1-L4.

Zn metaloporphyrins which is easy to measure.<sup>34</sup> L1 is used as reference monovalent ligand. L2, L3, and L4 are divalent, the difference among them being the linker length. This design feature was introduced in order to evaluate the relative importance of linker flexibility and binding site separation distance on the overall clustering modulation effect (see experimental methods in Supporting Information for synthesis of ligands L2–L4).

**2.2. Monovalent Ligand Binding.** As previously reported,<sup>28</sup> the interplay between binding of a monovalent ligand to a membrane-embedded receptor and the clustering of the receptor can be analyzed using a binding-clustering

thermodynamic cycle (Figure 2a). The binding affinities for the C and D forms of the receptor,  $K_{\rm C}$  and  $K_{\rm D}$ , are defined as:

$$K_{\rm C} = \frac{[\rm C\cdot L1]}{[\rm C][\rm L1]} \tag{2}$$

$$K_{\rm D} = \frac{\lfloor \mathbf{D} \cdot \mathbf{L} \mathbf{1} \rfloor}{\lfloor \mathbf{D} \rfloor \lfloor \mathbf{L} \mathbf{1} \rfloor} \tag{3}$$

which together with  $K_{\rm DC}$  and  $K_{\rm DCL}$  define the thermodynamic cycle (Figure 2a). Fitting the changes of the UV spectrum of 1 at different  $R_{\rm L}$  values and concentration of L1 to this binding–clustering model allows determining all the equilibrium constants.  $K_{\rm DC}$  is entered as a fixed parameter, determined from the fitting of the spectroscopic data in the absence of the ligand.  $K_{\rm DCL}$  is obtained from the completion of the thermodynamic cycle ( $K_{\rm DCL} = K_{\rm DC}K_{\rm C}/K_{\rm D}$ ) (Table 1). The data fitting allows also to extrapolate the spectra for the pure species, C, D, C·L1, and D·L1, which are consistent with the expected changes upon binding and clustering (Figure 2b,c).<sup>28</sup>

The modulation factor  $(M_f)$  for the monovalent ligand L1 quantifies how strongly the clustering is modulated by the binding (and vice versa), and it is defined as:

$$M_{\rm f} = \frac{K_{\rm C}}{K_{\rm D}} \tag{4}$$

or

$$M_{\rm f} = \frac{K_{\rm DCL}}{K_{\rm DC}} \tag{5}$$

which results in a  $M_f$  of 3.2 (Table 1). This result means that, for a given  $R_L$  (i.e., a particular receptor density in the membrane), the relative amount of the cluster form C increases 3.2 times upon binding of the ligand L1. Conversely, upon clustering, the amount of complex increases 3.2 times at a given concentration of ligand L1. This result is consistent with results reported earlier for a number of similar monovalent ligands.<sup>28</sup> In the absence of a clear multivalent effect, it can be attributed to the different environments in the C and D forms of the receptor (i.e., more or less hydrophobic) from the point of view of the binding enhancement, or a better packing of the complex in relation to the free receptor, from the point of view of the clustering enhancement.

**2.3. Divalent Ligand Binding.** For ligands L2–L4 there is the possibility that the binding of the second site may lead to vesicle adhesion, i.e., that the second binding event be interrather than intra-vesicular. Inter-vesicular adhesion is typically accompanied by an increase in the turbidity and scattering of the sample.<sup>18,21</sup> Both turbidity and sample scattering are, however, insensitive to ligand addition at moderate  $R_L$  (up to 250) for any ligand. Therefore, in these conditions, all multivalent binding is assumed to take place intravesicularly.

For all the ligands the binding site is an alkylimidazole. It is reasonable to assume that the microscopic binding constants (i.e., the binding constants per binding site) that lead to the complexes D·L and C·L have the same value for all the ligands. If this assumption is correct the measured macroscopic binding constants for the divalent ligands L2–L4 are expected to be twice of that for the monovalent ligand L1, on account of the presence of twice as many identical binding sites in ligands L2– L4. This is experimentally shown to be the case: the value of the apparent binding constant,  $K_{\rm ap}$ , at large  $R_{\rm L}$  values (i.e., when most of 1 is in the D form and  $K_{\rm ap} \approx K_{\rm D}$ ) is, within the error,

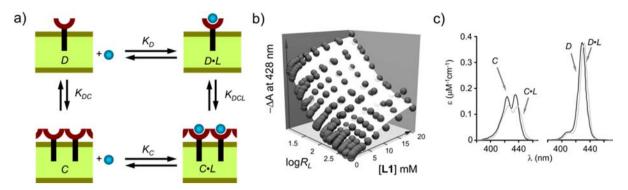



Figure 2. (a) Cartoon representation of the ligand binding-receptor clustering thermodynamic cycle for monovalent ligand L1. (b) Changes in absorbance  $(-\Delta A)$  at 428 nm with changes in log R<sub>1</sub> and concentration of L1 (dark spheres). The white surface is the best fit to the clusteringbinding model using the program Specfit 3.0 (see Supporting Information for details). (c) Soret band region of UV-vis spectra for the pure species (with ligand L1) derived from the global fitting procedure, using the program SPECFIT 3.0 (see Supporting Information for details).

Table 1. Binding and Clustering Parameters for L1<sup>a</sup>

| $K_{\rm C}  ({\rm M}^{-1})$                                           | $K_{\rm D} ({\rm M}^{-1})$ | $K_{\rm DC}$ | $K_{\rm DCL}$ | $M_{ m f}$     |  |
|-----------------------------------------------------------------------|----------------------------|--------------|---------------|----------------|--|
| $130 \pm 10$                                                          | $41 \pm 4.3$               | 13.6 ± 1.5   | 44 ± 4.3      | $3.2 \pm 0.65$ |  |
| <sup><i>a</i></sup> The error quoted is twice the standard deviation. |                            |              |               |                |  |

the same for ligands L2–L4 and twice as much the value of  $K_{an}$ for ligand L1 (Supplementary Table 1). Therefore,  $K_{\rm D}$ (divalent) is twice  $K_{\rm D}$ (monovalent) (Figure 3).

The binding of the divalent ligands to the cluster C form of the receptor can yield two kinds of complexes: C·L and  $C_2$ ·L (Figure 3). The equilibrium constants for the formation of  $C \cdot L$ from C and L is  $K_{C1}$ , and it is assumed to have a value that is twice the binding constant for the binding of L1 to C,  $K_{\rm C}$  (see above). The equilibrium constant that relates C·L and  $C_2$ ·L,  $K_{C2}$  can be expressed as a function of the concentrations of C, C·L, and C<sub>2</sub>·L:

$$K_{\rm C2} = \frac{[\rm C_2 \cdot L][1]}{[\rm C \cdot L][\rm C]} \tag{6}$$

where [1] is the total concentration of the receptor (see Supporting Information for the derivation of eq 6).

The relationship between all the individual species (D, C, D·L, C·L, and C<sub>2</sub>·L) can be written in the form of an extended thermodynamic cycle, where all the equilibrium constants are derived from the four constants  $K_{DC}$ ,  $K_D$ ,  $K_{C1}$ , and  $K_{C2}$  (see Supplementary Figures 3 and 4 and related discussion in the Supporting Information). Thus, by determining these constants all the concentrations of the species can be determined for any particular set of initial conditions. The UV titration data of embedded receptor 1 with ligands L2–L4 at different  $R_L$  values was fitted to a model that takes into account the formation of five colored species (D, C, D·L, C·L, and  $C_2$ ·L) related through four independent equilibrium constants,  $K_{DC}$ ,  $K_D$ ,  $K_{C1}$ , and  $K_{C2}$ (Figure 3a). Of these,  $K_{DC}$ ,  $K_D$ , and  $K_{C1}$  are determined by the fitting of the spectroscopic data in the absence of ligand  $(K_{DC})$ and by the fitting of the data from titrations with ligand L1. The fitting of the data from titrations with ligand L1 yields also the spectra of the species D, C, D·L, and C·L (Figure 2c), which are entered in the fitting of L2-L4 as known parameters. Thus, the only unknown parameters are  $K_{C2}$  (Table 2) and the extinction

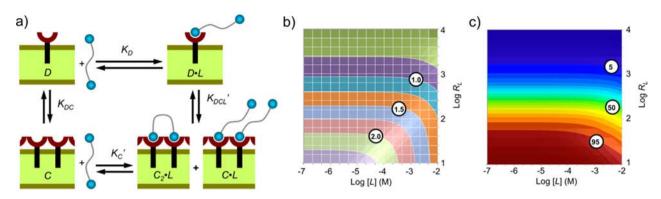
Table 2. Binding and Clustering Parameters for Ligands L2- $L4^{a}$ 

|                                                         | L2                | L3               | L4             |  |  |
|---------------------------------------------------------|-------------------|------------------|----------------|--|--|
| $K_{C2}$                                                | $6.3 \pm 0.72$    | $12 \pm 1.5$     | $70 \pm 8.1$   |  |  |
| EM (M)                                                  | $0.098 \pm 0.010$ | $0.19 \pm 0.022$ | $1.1 \pm 0.12$ |  |  |
| $^{a}$ The error quoted is twice the standard deviation |                   |                  |                |  |  |

coefficient (i.e., the UV spectra) of  $C_2$ ·L. The fitting is

remarkably good for all the ligands, showing that the a) b) c) 0.4  $(div.) = 2K_D (monov.)$ **AA at 428 nm** 0.3 ε (μM<sup>-1</sup>cm<sup>-1</sup>) D.L 0.2 0.1 20 0 15 400 440 λ (nm)

Figure 3. (a) Schematic representation of the clustering-binding equilibria defined by the four independent equilibrium constants  $K_{DL}$ ,  $K_{DCL}$ ,  $K_{CL}$  and  $K_{C2}$  (see Supplementary Figure 4 for full thermodynamic cycle). (b) Changes in absorbance  $(-\Delta A)$  at 428 nm with changes in log  $R_{L}$  and concentration of L4 (dark spheres). The white surface is the best fit to the clustering-binding model using the program SPECFIT 3.0 (see Supporting Information for details). (c) Soret band region of UV-vis spectra for the pure species (with ligand L4). Only  $C_2$  L spectrum is obtained from the fitting of L4 data. C, C·L, D, and D·L spectra are obtained from the fitting of L1 data and are displayed here for comparison purposes.


logR<sub>L</sub>

2.5

[L1] mM

400

440



**Figure 4.** (a) Simplified form of the thermodynamic binding–clustering cycle for divalent ligands. (b) Contour plot of the variation of the log  $M_f$  for the binding of L4 to membrane-embedded 1 at different concentrations of L4 and increase of  $R_L$  (concentration of  $1 = 2 \mu M$ ). Each color represents an increase of log  $M_f$  of 0.25 unit. (c) Percentage of complex in the cluster form at different  $R_L$  and concentrations of ligand L4. Each color represents an increase of 5% (concentration of  $1 = 2 \mu M$ ).

assumptions made for  $K_D$  and  $K_{C1}$  are reasonable (Figure 3b and Supplementary Figure 2). The extrapolated UV spectrum for the Soret band region is also consistent with the expected spectrum of a ligand-bound clustered receptor: broad and red-shifted in relation with the ligand-free species (Figure 3c and Supplementary Figure 2).

Our aim is to establish how strongly binding and clustering modulate each other, regardless of the precise stoichiometry of the receptor—ligand complex formed. This modulation is graphically illustrated in a simplified thermodynamic cycle that relates four species through the equilibrium constants  $K_{\rm DC}$ ,  $K_{\rm D}$ ,  $K_{\rm DCL}'$ , and  $K_{\rm C}'$  (Figure 4a).  $K_{\rm C}'$  and  $K_{\rm DCL}'$  are the apparent equilibrium constants that take different values at different concentrations of ligand and  $R_{\rm L}$  values, but can be determined for any set of initial conditions by using the values of  $K_{\rm C1}$ ,  $K_{\rm C2}$ ,  $K_{\rm D}$ , and  $K_{\rm DC}$  determined from the fitting of the data.  $K_{\rm C}'$  can be written as:

$$K_{\rm C}' = \frac{[{\rm C} \cdot {\rm L}] + 2[{\rm C}_2 \cdot {\rm L}]}{[{\rm C}][{\rm L}]}$$
(7)

Knowing  $K_{C}'$ , it is possible to determine the modulation factor  $M_{f}$  for ligands L2–L4, which is defined as:

$$M_{\rm f} = \frac{K_{\rm C}}{K_{\rm D}} \tag{8}$$

or

$$M_{\rm f} = \frac{K_{\rm DCL}'}{K_{\rm DC}} \tag{9}$$

Like  $K_{\rm C}'$  and  $K_{\rm DCL}'$ ,  $M_{\rm f}$  varies with both the concentration of ligand and  $R_{\rm L}$ . Clearly, the formation of cluster complex  $C_2$ ·L is favored by the presence of free C. Therefore,  $M_{\rm f}$  will be larger in conditions when [C] is larger, i.e., at low ligand concentration and low  $R_{\rm L}$  values.

In all cases,  $M_f$  is larger for the divalent L2–L4 ligands than the monovalent L1 in a wide range of experimental conditions (Figure 4b and Supplementary Figure 5). This behavior is expected from a ligand with multiple binding sites, where the additional complex C<sub>2</sub>·L contributes to enhance the stability of the cluster. Unexpectedly, the results also show that the ligand with the longest and more flexible linker, L4, displays the largest  $M_f$ . In the case of L4,  $M_f$  is larger than 100 in a wide range of experimental conditions (Figure 4b). In practical terms, this means that binding of the ligand leads to nearquantitative clustering of the receptor in these conditions (Figure 4c).

Article

**2.4. Effective Molarity.** The effective molarity, EM, is typically seen as the local concentration of complementary binding sites in a complex held by multiple interactions. EM is therefore a measure of how efficient multivalency or chelate effect is in increasing the stability of a complex. In our system, the clustered form C can be considered as a multivalent receptor. Thus, the formation constant of  $C_2$ ·L from C·L and C,  $K_{C22}$  can be written as a function of EM as follows:

$$K_{\rm C2} = 0.5 K_{\rm C} \rm EM \tag{10}$$

where 0.5 is the statistical correction factor. The calculated values of EM (i.e., 0.1-1.1 M, Table 2) are within the expected value for systems involving ligands of similar size.<sup>35</sup> For our divalent ligands, EM increases with the length and the flexibility of the linker, which is a trend that is the opposite to the one normally observed in systems where the second binding event leads to ring closure.<sup>35</sup> It is worth noting that C<sub>2</sub>·L can be formed by the additional binding of C·L to any surrounding free C. Molecular modeling suggest that ligands L2 and L3 can only reach the nearest neighbor (i.e., up to a maximum of six binding sites in a close-packed cluster, Supplementary Figure 6). On the other hand for L4 the second binding site may reach up to 18 neighboring receptor binding sites. This difference would result in a 3-fold increase in the EM for L4 relative to L2 and L3, which accounts, at least partly, for the trend in EM values between the divalent ligands.

There is a direct relationship between EM and  $M_{\rm f}$  that can be mathematically expressed as (see SI for details):

$$M_{\rm f}(\text{divalent}) = M_{\rm f}(\text{monovalent}) \left( 1 + K_{\rm C} \text{EM} \frac{[\text{C}]}{[1]} \right) \quad (11)$$

Equation 11 clearly shows that the ligand binding chelate effect, quantified as EM, is transferred to the membrane-water interface, where the conditions of relatively high local concentration make a relatively weak cooperative effect more efficient. Equation 11 has the drawback that requires [C] to be determined at each point of the titration in order to calculate  $M_{\rm fr}$  A version of eq 11 can be drawn for the modulation factor of the binding of the first aliquot of the ligand, which depends only on the initial conditions of the experiment (see Supporting Information for details):

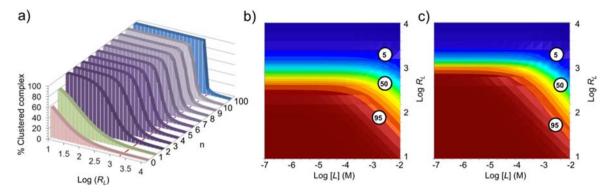



Figure 5. (a) Percentage of complex clustered upon binding to receptor 1 of the first ligand aliquot for derivatives of ligand L4 with increasing number of binding sites. The percentages of cluster for the free receptor (n = 0) and complex with a monovalent ligand (n = 1) are shown for comparison. The red line marks the limit in  $R_L$  (ca. 1900) above which no cluster response follows ligand binding. (b) Percentage of complex clustered upon binding to receptor 1 of a derivative of ligand L4 with four binding sites. Each shade represents an increase of 5%. (c). Percentage of complex clustered upon binding to receptor 1 of a derivative of ligand L4 with eight binding sites. Each shade represents an increase of 5%. The concentration of 1 is 2  $\mu$ M in all cases.

$$M_{\rm f}(\text{divalent,initial}) = M_{\rm f}(\text{monovalent}) \left( 1 + K_{\rm C} \text{EM} \frac{K_{\rm DC}}{K_{\rm DC} + R_{\rm L}} \right)$$
(12)

Equation 12 shows that the  $M_f$  is enhanced by large  $K_C$ , EM, and  $K_{DC}$  values, and it is reduced by high  $R_L$  (equivalent to low receptor density). However, a large response in the organization of membrane-embedded 1 does not requires very large  $K_C$ , EM, and  $K_{DC}$  values. As we have already seen, our ligands are able to elicit a strong clustering response upon binding (Figure 4b,c and, Supplementary Figure 5). The efficiency in driving the cluster for a multivalent ligand with intrinsic low  $K_C$  and EM is better illustrated considering a hypothetic ligand with *n* binding sites.

**2.5. Clustering-Binding**  $M_{\rm f}$  for the Binding of *n*-Valent Ligands. It can be shown that for a multivalent ligand with *n* independent identical binding sites (i.e., with identical EM and binding constant  $K_{\rm C}$  for each site), the modulation factor  $M_{\rm f}$  can be written as (see Supporting Information for details):

$$M_{\rm f}(n\text{-valent}) = M_{\rm f}(\text{monovalent}) \left(1 + \sum_{i=2}^{i=n} \left(K_{\rm C} \text{EM}\frac{[\text{C}]}{[1]}\right)^{i-1}\right)$$
(13)

 $M_{\rm f}(n-{\rm valent,initial})$ 

$$= M_{\rm f}(\text{monovalent}) \left( 1 + \sum_{i=2}^{i=n} \left( K_{\rm C} \text{EM} \frac{K_{\rm DC}}{K_{\rm DC} + R_{\rm L}} \right)^{i-1} \right)$$
(14)

Equations 13 and 14 can be applied to simulate the clustering modulation factor of any hypothetic ligand containing n identical binding sites if the values of  $K_{\rm C}$ ,  $K_{\rm DC}$ , and EM are known. For example, for a ligand with the same  $K_{\rm C}$ ,  $K_{\rm D}$ , and EM values of L4 for receptor 1, the simulation shows that clustering is quantitative upon ligand binding for  $R_{\rm L}$  as high as 500 (i.e., receptor densities as low as 0.2%) with n as low as 4 (Figure 5a,b). From eq 14, it is possible to predict the maximum  $R_{\rm L}$  (i.e., minimum receptor density) required for a multivalent ligand to be able to induce the clustering of the receptor, i.e.,

$$R_{\rm L} < K_{\rm C} E M K_{\rm DC} - K_{\rm DC} \tag{15}$$

Thus, for L4 derivatives binding to 1,  $R_{\rm L}$  must be less than ca. 1900 (i.e., ligand density larger than 0.053%). This is graphically shown in Figure 5. Strikingly, for n > 5, the clustering response upon ligand binding becomes strongly sensitive to very small changes in receptor density. Thus, for n= 8, a receptor density of 0.04% ( $R_{\rm L} = 2500$ ) is hardly affected by the binding of the ligand, while a density of 0.11% ( $R_{\rm L} =$ 910) results in >98% of clustering upon ligand binding (Figure 5a,c). For very large n, the difference is even more notable. For example, for n = 100, changing the density from 0.05 to 0.06% (i.e.,  $R_{\rm L}$  from 2000 to 1700) leads to quantitative clustering (i.e., >99.9%) (Figure 5a).

## 3. CONCLUSIONS

In summary, in this work we quantify how the clustering of a membrane-embedded receptor is modulated by the binding of a divalent ligand in solution. The modulation of clustering is attributed to the combination of two effects: first, the larger affinity of each binding site for the clustered form, as reflected by  $M_{\rm f}$  (monovalent), and second, the effect of molarity EM for the formation of the complex  $C_2$ ·L. Both effects are intrinsically weak; i.e.,  $M_{\rm f}$  (monovalent) is 3.2, and the EM is between 0.1 and 1 M. The implications are that for membrane-embedded receptors, the binding of flexible ligands with a low level of preorganization or even low binding affinity per site can trigger an on/off behavior typical of biomolecular systems.<sup>36</sup> Simulations for n-valent ligands show that clustering response upon ligand binding becomes very sensitive to small variations of receptor density in the membrane for n values larger than 5. As a consequence, a small amount in the input signal variation (i.e., receptor density in the membrane) leads to an on/off output signal (clustering) from the system. The model allows also estimating the on/off switching point when the individual binding constants are known. The predictions of the model are therefore consistent with the attribution of the large cooperative effects typical of biomolecular systems to a multivalent chelate effect,<sup>37</sup> and may find applicability in the analysis of a number of cell membrane processes, including cell adhesion, which require both receptor clustering and multivalence to take effect. The analysis reported here offers also a useful tool for the design of responsive de novo systems based on cell-like compartments.

## Journal of the American Chemical Society

## ASSOCIATED CONTENT

# **Supporting Information**

Experimental methods (including synthesis of L2–L4, sample preparation, data processing, and titration experiments), 1 clustering and L2 and L3 titration data, molecular modeling calculations, detailed derivation of the equations, and detailed data fitting procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

# AUTHOR INFORMATION

### **Corresponding Author**

s.tomas@bbk.ac.uk

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This work was funded by the Faculty of Sciences, Birkbeck, University of London. We thank C. A. Hunter for critical reading of the manuscript.

## REFERENCES

(1) Luckey, M. Membrane Structural Biology; Cambridge University Press: Cambridge, UK, 2008.

- (2) Grakoui, A.; Bromley, S. K.; Sumen, C.; Davis, M. M.; Shaw, A. S.; Allen, P. M.; Dustin, M. L. Science **1999**, 285, 221.
- (3) Renner, M.; Specht, C. G.; Triller, A. Curr. Opin. Neurobiol. 2008, 18, 532.
- (4) Tolar, P.; Hanna, J.; Krueger, P. D.; Pierce, S. K. *Immunity* 2009, 30, 44.

(5) Munoz, P.; Mittelbrunn, M.; de la Fuente, H.; Perez-Martinez, M.; Garcia-Perez, A.; Ariza-Veguillas, A.; Malavasi, F.; Zubiaur, M.; Sanchez-Madrid, F.; Sanchol, J. *Blood* **2008**, *111*, 3653.

- (6) Simons, K.; Toomre, D. Nat. Rev. Mol. Cell Biol. 2000, 1, 31.
- (7) Allen, J. A.; Halverson-Tamboli, R. A.; Rasenick, M. M. Nat. Rev. Neurosci. 2007, 8, 128.

(8) Boniface, J. J.; Rabinowitz, J. D.; Wulfing, C.; Hampl, J.; Reich, Z.; Altman, J. D.; Kantor, R. M.; Beeson, C.; McConnell, H. M.; Davis, M. M. *Immunity* **1998**, *9*, 459.

- (9) Banerjee, S.; Konig, B. J. Am. Chem. Soc. 2013, 135, 2967.
- (10) Gruber, B.; Kataev, E.; Aschenbrenner, J.; Stadlbauer, S.; Konig, B. J. Am. Chem. Soc. **2011**, 133, 20704.

(11) Mancin, F.; Scrimin, P.; Tecilla, P.; Tonellato, U. Coord. Chem. Rev. 2009, 253, 2150.

- (12) Voskuhl, J.; Ravoo, B. J. Chem. Soc. Rev. 2009, 38, 495.
- (13) Noble, G. T.; Craven, F. L.; Voglmeir, J.; Sardzik, R.; Flitsch, S. L.; Webb, S. J. J. Am. Chem. Soc. **2012**, 134, 13010.

(14) Mahon, E.; Aastrup, T.; Barboiu, M. Chem. Commun. 2010, 46, 2441.

(15) Gruber, B.; Konig, B. Chem.—Eur. J. 2013, 19, 438.

(16) Barnard, A.; Smith, D. K. Angew. Chem., Int. Ed. 2012, 51, 6572.

- (17) Huskens, J.; Mulder, A.; Auletta, T.; Nijhuis, C. A.; Ludden, M.
- J. W.; Reinhoudt, D. N. J. Am. Chem. Soc. 2004, 126, 6784.
- (18) Wang, X.; Mart, R. J.; Webb, S. J. Org. Biomol. Chem. 2007, 5, 2498.

(19) Denisov, G.; Wanaski, S.; Luan, P.; Glaser, M.; McLaughlin, S. Biophys. J. 1998, 74, 731.

(20) Liem, K. P.; Noble, G. T.; Flitsch, S. L.; Webb, S. J. Faraday Discuss. 2010, 145, 219.

(21) Gruber, B.; Balk, S.; Stadlbauer, S.; Konig, B. Angew. Chem., Int. Ed. 2012, 51, 10060.

(22) Christian, D. A.; Tian, A. W.; Ellenbroek, W. G.; Levental, I.; Rajagopal, K.; Janmey, P. A.; Liu, A. J.; Baumgart, T.; Discher, D. E. *Nat. Mater.* **2009**, *8*, 843.

(23) Sasaki, D. Y.; Waggoner, T. A.; Last, J. A.; Alam, T. M. Langmuir 2002, 18, 3714.

- (24) Noble, G. T.; Flitsch, S. L.; Liem, K. P.; Webb, S. J. Org. Biomol. Chem. 2009, 7, 5245.
- (25) Gong, Y.; Ma, M.; Luo, Y.; Bong, D. J. Am. Chem. Soc. 2008, 130, 6196.
- (26) Mart, R. J.; Liem, K. P.; Wang, X.; Webb, S. J. J. Am. Chem. Soc. 2006, 128, 14462.
- (27) Meyenberg, K.; Lygina, A. S.; van den Bogaart, G.; Jahn, R.; Diederichsen, U. Chem. Commun. 2012, 47, 9405.
- (28) Tomas, S.; Milanesi, L. Nat. Chem. 2010, 2, 1077.
- (29) Thomas, G. B.; Rader, L. H.; Park, J.; Abezgauz, L.; Danino, D.;
- DeShong, P.; English, D. S. J. Am. Chem. Soc. 2009, 131, 5471.
- (30) Jiang, H.; Smith, B. D. Chem. Commun. 2006, 1407.
- (31) Kauscher, U.; Ravoo, B. J. Beilstein J. Org. Chem. 2012, 8, 1543.
- (32) Doyle, E. L.; Hunter, C. A.; Phillips, H. C.; Webb, S. J.; Williams, N. H. J. Am. Chem. Soc. 2003, 125, 4593.

(33) Jung, H.; Robison, A. D.; Cremer, P. S. J. Struct. Biol. 2009, 168, 90.

- (34) Tomas, S.; Milanesi, L. J. Am. Chem. Soc. 2009, 131, 6618.
- (35) Misuraca, M. C.; Grecu, T.; Freixa, Z.; Garavini, V.; Hunter, C. A.; van Leeuwen, P.; Segarra-Maset, M. D.; Turega, S. M. J. Org. Chem. **2011**, *76*, 2723.
- (36) Martinez-Veracoechea, F. J.; Frenkel, D. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 10963.

(37) Hunter, C. A.; Anderson, H. L. Angew. Chem., Int. Ed. 2009, 48, 7488.